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Abstract

Lewis-acid mediated heterolysis of substituted methoxy acetals derived from anomeric [3.3.1] oxabicyclic
lactones leads to enantiopure deoxy C-glycosides in excellent chemical yield. An alternative route to C-glycosidic
esters involves simple one-step opening of [3.3.1] oxabicyclic lactones with in situ esterification. © 1999 Elsevier
Science Ltd. All rights reserved.
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The synthesis of C-glycosides has been a continuing challenge during the last decades. The massive
work on carbohydrates and carbohydrate mimics reflects unabated interest in this area of natural
product chemistry.! Several techniques to generate C-glycosidic structures have been developed. Most
of these are substitutions of common leaving groups as in anomeric acetates, halides,?? sulfones?®
and trichloroacetimidates.2® Depending on reaction conditions, the new carbon—carbon bond has been
formed by nucleophilic,? electrophilic and radical attack.* A well established route in carbohydrate
chemistry is the Lewis-acid mediated C-glycosidation of anomeric methyl acetals.’ This method has
already been applied by us in natural product synthesis for the preparation of the C3—C13 segment of the
phorboxazoles A and B.S

We herein report the broad application of trimethylsilyl triflate mediated cleavage of monocyclic
anomeric methyl acetals for the synthesis of deoxy and pseudo C-glycosides in solvent acetonitrile.
Moreover, we have developed a simple one-step procedure for obtaining the C-glycosidic esters from
[3.3.1] oxabicyclic lactones.

As we have shown, these anomeric [3.3.1] oxabicyclic lactones are easily prepared from 8-oxabicyclo-
[3.2.1]oct-6-en-3-ones.>” The anomeric methyl acetals 1-5, which can be regarded as glycoheptopyran-
uronic acid methyl esters (Scheme 1), are readily accessible in high yield via acid catalyzed methanolysis
(Scheme 2).8 Further transformations provide functionalized acetals 6 and 7.5° Treatment with trimethyl-
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silyl triflate at low temperature and addition of silylated nucleophile furnishes a series of C-glycosides.
The results are summarized in Table 1.
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Scheme 1.

Trimethylsilyl triflate in acetonitrile as solvent and allylsilane as nucleophile (conditions A) furnished
the expected 1,5-trans configurated C-glycosides 1a, 2a, 3a and 4a (Table 1, entries a, c, d, €).' More
complex acetals gave also good yields (Table 1, entries h, 1).
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TMSOTS in dichloromethane led to elimination (Table 1, entry b).!! Simultaneous deprotection
occurred without loss of chemodifferentiation when acid labile protecting groups were used (Table 1,
entries f, g). As chemical yields and selectivities are still very good this is a useful feature when further
functionalization is necessary.® For the sterically more demanding silyl ketene acetal (conditions B) good
selectivities were obtained in the case of methyl acetal 1, 4 and 7 (Table 1, entries i, k, I). Stereoselectivity
decreased only when using methyl acetal 2. The neighbouring axial methyl group disfavours attack of
the nucleophile from the top so that the 1,2-trans configuration becomes more favourable giving a nearly
1:1 mixture of epimers (Table 1, entry j).
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Unlike C-glycosidic acids the corresponding C-glycosidic esters resulting from the methyl acetal
cleavage i are much easier to isolate and functionalize (Scheme 2). While all reactions listed in Table 1
gave good yield and stereoselectivity they did not reach the results of the anomeric lactone opening
method iii described by us recently.> The newly developed one-step procedure ii (Scheme 2) combines
both advantages of excellent yield and convenient isolation (Table 2).

Treatment of lactones 8 and 9 with equimolar amounts of trimethylsilyl triflate and either allylsilane
or silyl ketene acetal followed by addition of excess methanol furnished the esterified C-glycosides, after
complete conversion of starting material, in excellent yield and with still better selectivity (Table 2, entry
c). Even lactone 10 which resists acid catalyzed methanolysis was transformed into the C-glycoside
10b (Table 2, entry d). The in situ esterification with methanol probably occurs on a trimethylsilyl ester
intermediate.

In conclusion we have prepared a series of 1,5-trans-C-glycoheptopyranuronic acid esters selectively
and easily in high yield from monocyclic anomeric methyl acetals and also from anomeric [3.3.1]
oxabicyclic lactones. The methoxide group as a supposedly poor leaving group serves well in polar
acetonitrile as solvent and trimethylsilyl triflate as Lewis acid, giving favourable results concerning yield
and stereoselectivity. A further development involves addition of a nucleophile with subsequent in situ
esterification. This one-step procedure significantly improves yield, 1,5-trans selectivity and handling.
We think that our de novo approach to a variety of C-glycosides>S has enormous potential and contributes
to the field of carbohydrate chemistry.
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Table 2
One-step lactone opening procedure with in situ esterification
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